JOURNAL OF COMPUTATIONAL PHYSICS B10, §12-133 (1994)

An Implicit Lagrangian Method for Solving One- and
Two-Dimensional Gasdynamic Equations

F. Liu,* A. C. McINTOSH, AND J. BRINDLEY

University of Leeds, Leeds L8§2 9JT, United Kingdom

Received March 26, 1992; revised February 1993

The gasdynamic equations are solved by using an implicit l.agrangian
algorithm in one and two dimensions. The evolution equation of energy
is replaced by the algebraic isentropic condition for each Lagrangian
computational cell. The algorithm is essentially developed for isentropic
flows but is also applicable to problems involving weak shocks where
the entropy increase across the shock is fairly small. The algorithm can
he used to predict shock tube problems provided that the entropy
change of the shocked Huid is taken into account by incorporating the
Rankine-Hugoniot condition. The present method does not require an
added artificial viscosity since it contains a built-in mechanism to damp
high-frequency disturbances behind shocks. The solution performance
of the algorithm is assessed against the exact solution for two shock
tube problems, Contact discontinuities are computed with infinite
resolution {the number of cells over which the variation occours is zero).
Finally, the algorithm is applied to several gasdynamic problems.
‘€1 1894 Acadeimic Press, inc,

1. INTRODUCTION

Finite diflerence methods used to approximate Eulerian
partial dilferential equations of gasdynamics introduce
numerical diffusion, dispersion, or both through truncation
errors. These errors become pronounced when the methods
are used to solve the unsteady gasdynamics equations
involving shocks and/or contact discontinuities. First-order
schemes, such as the first-order upwind scheme of Steger
and Warming [ 1] and the scheme of Godunov [2], have
truncation errors proportional to a second derivative which
plays the role of artificial viscosity. Therefore, whilst
these schemes are able to dampen the high-frequency
disturbances generated at shocks, they also smooth out
discontinuities (shocks and contacts} and strong gradients.
Second-order schemes, such as schemes of the Lax—
Wendroff family, on the other hand, not only smooth out
contact discontinuities, but aiso give rise lo spurious
oscillations behind shocks. In order to reduce these
oscillations, von Neumann and Richtmyer [3] proposed
the addition of an cxplicit artificial viscosity term to the
pasdyniamics cquations. As a result, a shock transition is
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spread over typically three to four grid cells [4]. Artificial
viscosity does not contribute to the smearing of a contact
discontinuity.

The random choice method (RCM) [5] is capable of
computing shocks and contact discontinuities with infinite
resolution. However, the method is inaccurate in smooth
regions of the flow and is unable to produce accurate posi-
tions of discontinuities | 4]. Another method to keep shocks
and contact discontinuities sharp has been developed by
Harten and Hyman [67. In this method, the computationat
grids are adjusted (within the underlying fixed mesh) from
time step to time step in order to minimise numerical diffu-
sion. Although the method produces very accurate results
for the shock tube problems of Sod [4] and Lax [7]. itis
very difficult to extend to two dimensions.

Recently several sophisticated finite difference techniques
have been developed which are capable of capturing dis-
continuities more accurately. These include the essentially
non-oscillatory (ENG) scheme [8], the weighted average
flux (WAF) method [9], and TVD-type (total variation
diminishing) high resolution schemes [10]. TVD-type
schemes have gained popularity for their applications in
compressible flow. These schemes all contain some amount
of internal dissipation. In TVD schemes the amount of this
inherent numerical dissipation depends on the flux limiter
used [ 10]. When these schemes are applied to a shock tube
problem, they produce very high resolution for the shock,
especially in TVD-type schemes; however, the contact dis-
continuity is still spread over typically three to four grid
cells. For Eulerian finite difference methods, contact discon-
tinuities are more difficult to compute with high resolution
than shocks since they do not have a natural compression
mechanism (o help their sharp numerical resolution,

In some problems we can tolerate this non-physical
smearing of sharp gradients at a contact discontinuity.
It is not acceptable, however, in others, in particular the
stcaring of a density interface in the study of the deforma-
tion of a premixed flame front under the action of a pressure
disturbance [117], with which we are concerned here.

Our study is motivated by the deformation and accelera-
tion of a curved flame under the action of a pressure
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gradient. At the very early stage of the interaction between
a pressure wave and a premixed ffame the chemical reaction
and molecular diffusion processes can be neglected and the
governing equations reduce to the equations of gas-
dynamics. The flame front is essentially convected with the
flow driven by the pressure wave. Such a simplified gas-
dynamic model holds true only at the early stage of the
interaction since at a later stage reaction and diffusion-
dominated physical processes cannot be ignored. Under
these circumstances we might expect a Rayleigh-Taylor-
type instability to be important. This physical situation is
very difficult to simulate numerically since the flame
behaves as a contact discontinuity and numerical diffusion
is not acceptable.

The Rayleigh-Taylor instability [12] occurs when an
inertial or gravitational force accelerates an interface
between two incompressible fluids of different density. A
similar phenomenon is the Richtmyer—Meshkov instability,
which is produced by a shock wave hitting an interface (a
contact discontinnity or material boundary) separating
fluids of different density [13]. The growth rate of these
instabilities depends on the density ratio of the fluids at the
interface. When modelling them, therefore, it is crucial to
keep the Muid interface sharp, otherwise the physics could be
largely suppressed by the smearing of the density interface
caused by numerical diffusion. This is particularly true at
the early stage of the development of the interface instability
which is the main concern of the present study. A TVD
scheme, however, would be the best choice to study an inter-
face instability if one is interested in a long time effect. To
study the early stage of the interface instability the required
numerical algorithm must be able to compute a contact
discontinuity with infinite resolution and should be easily
extendable to two dimensions, None of the above methods
appears to satisfy these requirements and we are led to the
investigation of a Lagrangian method.

Lagrangian methods appear to offer substantial advan-
tages over Eulerian methods as far as modelling a contact
discontinuity s concerned. Since they do not suffer from
numerical diffusion around contact discontinuities and
therefore can keep them perfectly sharp, they are suitable
methods for computing interface instabilities. In addition,
when the physical problem of interest involves free surfaces,
interfaces, or discontinuities, it is far more natural to use a
Lagrangian method to perform the numerical simulation.
Lagrangian calculations are free from numerical diffusion
around a contact discontinuity for two reasons, First,
there is no explicit dependence of density on the spatial
derivatives in the governing equations; second, pressure and
velocity are conserved across the contact discontinuity,
However, Lagrangian methods stiil suffer numerical diffu-
sion in regions away from the contact discontinuity because
of the presence of convective derivatives of velocity and
pressure in the governing equations. Although Lagrangian
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methods offer some advantages over Eulerian methods, they
suffer from the severe drawback that they break down when
the flow of interest undergoes large fluid distortions. A
Lagrangian method, however, is still suitable to study the
pressure wave/premixed flame interaction at the early stage
for two reasons. First, it can keep a contact discontinuity
perfectly sharp; second, we do not need to worry about the
above drawback since the simplified gasdynamic model
only holds true at the early stage, i.e., before the method
coliapses due to severe fluid distortions.

For incompressible fluid problems, Lagrangian methods
have been used successfully to study the Rayleigh-Taylor
instability [ t4] and the Kelvin—Helmholtz instability [15].

Several Lagrangian methods for solving unsteady
gasdynamics equations have also been developed in the
literature. For example, the ALE (arbitrary Lagrangian-
Eulerian) methods [16, 171 have been widely used in
computational fluid dynamics. In these methods, the
vertices of a finite difference mesh can move with the fluid
{Lagrangian), be fixed {Eulerian), or be moved in any other
prescribed way. More recently Bilbao [18] presented a fully
Lagrangian method for unsteady compressible fluids in
three dimensions. In these Lagrangian methods, the
evolution equations of mass, momentum, and energy in
differential form are solved. In addition, they all require
the addition of an explicit artificial viscosity term to the
equations of momentum and energy to reduce numerical
oscillations when the problems of interest involve shocks.
Boris [19] had earlier developed another Lagrangian
method for one-dimensional compressible flows in which
the evolution equation for energy was replaced by using the
isentropic condition for each Lagrangian computational cell.
However, the numerical results based on this method have
not involved problems with shocks and/or contact discon-
tinuities. The present Lagrangian algorithm is based on the
method of Boris [19].

In the present algorithm no explicit artificial viscosity
terms are required; instead the algorithm can be made inter-
nally dissipative to dampen numerical oscillations behind
shocks. The evolution equation of energy is eliminated by
using the isentropic equation of state, so that the entropy of
each computational cell is strictly conserved throughout the
computation. In one dimension, the sudden change in
entropy of a Lagrangian computational cell across the
shock is taken into account by using the Rankine-Hugoniot
relation. The algorithm is verified by comparison with the
exact solution for two shock tube problems in each of which
a shock and a contact discontinuity are formed in the flow.
They provide good testbeds, therefore, for the evaluation of
the method. Finally to further demonstrate the merit of this
algorithm, it is used to study the response of a density
discontinuity (which simulates a premixed flame front on an
acoustic time scale) to a harmonic pressure input in both
one and two dimensions.
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2. BASIC EQUATIONS

The equations governing the conservation of mass,
momentum, and energy (written in terms of entropy) for an
unsteady two-dimensional gasdynamic flow are written in
Lagrangian form as

Z;?:O. (4)
Equation (4) is the isentropic condition for each

Lagrangian fluid element; it replaces the evolution equation
of energy when temperature is eliminated from the energy
equation using the state equation of an ideal gas. The
advantages of using Eq. (4) are twofold. First, we are able to
deal with an algebraic equation rather than a differential
one. Second, when the isentropic condition replaces the
evolution equation of energy, there is no need to evaluate
the velocity of a computational cell, which is required by its
kinetic energy calculation, from the interpolation over the
velocities of its four vertices (this will become clear in
Section4). An appropriate entropy expression for a
Lagrangian fluid element is defined as

S=p/p, (5)

where y is the specific heat ratio. When the flow involves a
shock, Eq. (4) is not valid for a Lagrangian fluid element
crossing the shock, and its entropy is subject to an increase
according to the Rankine-Hugoniot relation. In one dimen-
sion, it is straightforward to make such an entropy
modification for a Lagrangian fluid element crossing the
shock by using the Rankine—Hugoniot relation as described
in the next section. In two dimensions, however, it is not so
easy to apply the Rankine-Hugoniot condition and we
make no attempt in the present work to conduct the entropy
modification for a two-dimensional shocked flow.

Finally, the evolution equations of location of a
Lagrangian fluid element are given by

dx
kg 6
ik (6)
dy
Zov 7
=" (7
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3. NUMERICAL ALGORITHM IN ONE-DIMENSION

3.1. Formulation of the Algorithm

A typical computational domain for the one-dimensional
algorithm, shown in Fig, 1, consists of &V cells of volume A,,
i=1,2,.. N, bounded on ¥ + 1 cell interfaces located at x;,
i=1,2,.., N+ 1 The cell volumes, A,, are the difference
between each two sequential cell interfaces such that

Ay=x; 1 — x5 (8)
At each of these cell interfaces, say the ith, there is stored a
location x; and velocity u,. The pressure p,, density p;, and
cell volume A, are stored at the centre of each computa-
tional cell bounded by the ith and (i + 1)th cell interfaces.
For the sake of convenience, we introduce cell mass M; and
interface mass m, which are respectively defined as

M,=p:4,,
m;= %(M:‘}‘ M,_,).

9)
(10)

The derivative of M, with respect to time can be written as,
based on the mass conservation Eq. (1),

dM, dp; du;
—=A,|—+p,— =0 11
dt '(dz“’*ax) (1)

Equation (11) implies that each cell mass M, is constant
throughout its evolution.

The evolution equation of cell interface, Eq. (6}, is
discretised to

XU =xtrAtfeut+ (1 —e ) ul 1], (12}

The superscript # indicates variables at time f, and the
superscript ®+ 1 indicates variables at time 7+ At. The
quantity ¢, is the explicitness parameter for the interface
locations. Conventionally {see [19], for example), &, is
restricted to 0 < ¢, < 1. However, in the present work, ¢, is
allowed to be smaller than zero. A qualitative discussion of
the effect of ¢, and ¢, (see below) on the selution perfor-
mance of the present algorithm will be given in Section 3.3.
When ¢, <1, the method is implicit; when ¢,=31, the
method is nominally most accurate; when e,=1, the
method is explicit and most unstable.

1 2 =1 i i+ N N+
Xi
Ui

F1G. 1. A typical computational domain for the Lagrangian algorithm.
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Integration of Eq. (2) over the domain bounded by the
two dashed lines (see Fig. 1) for the ith cell interface yields

%L _PiT P
dt m,

(13)

Equation (13) is in fact Newton’s second law written for the
ith interface mass m,. It is worth noting that it is the same
equation as that obtained by Boris [ 19] based on a different
physical argument. Equation (13) is then further discretised
to

dte, . , 4l —e,) .\ pa
u; el Vel A0 Pl V /Ry D

I i

(14)

where ¢, is the explicitness parameter for the interface
velocity, having the same properties as &,.. The parameter g,
is also allowed to be negative.

The way of discretising Eqgs. (2) and (6) (see Egs. {14)
and (12)) is very similar to, but less general than that used
in the schemes of Lerat and Peyret [20] and Beam and
Warming {21].

To simplify the following discussion, we introduce two
auxiliary parameters 4; and B, such that

dte,

A= == (p7 = p]_)), (15)
At(1 —
PEL Sl ) (16)
m;
Equation (14) is then written as
u?+l=Ai_Br'(P?+l—P?_+11)- (17)

The ith cell volume at time r+ 4¢ is achieved by using
Egs. (8), (12), and (17), viz.

AT =A"4 A4, (18)
where
Ad;=A{e (uf  —ul)}+ At{(1 —e)[(4,, (— 4)
— B, (Pl =i+ BT - p D1 (19)

The present numerical algorithm is built on the fact that at
time 7+ At the density of the ith cell computed from the
mass conservation equation, Eq. (9), must be equal to that
calculated from the isentropic condition, Eq. (5), given by

M, (pythw
A?+1=( S,) .

(20)
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Equation (20) can also be written as

M, Y
n+1 _ i
pi+ _S"(Af_7+l)'

This system (Eq. (21)) comprises N — 2 nonlinear algebraic
equations for pressures p? "' (i=2, 3, .., N— 1) and is used
in the present numerical algorithm to obtain the pressure
field at time ¢ + A¢t.

Equations (21) and (17) are subject to appropriate
boundary conditions. Those used in this work to test shock
tube problems are the simple transmissive boundary condi-
tions at both ends of the tube. The N — 2 nonlinear algebraic
equations for pressure are then solved iteratively by using
the Newton—Raphson method, stopping the iteration once
the prescribed convergence condition is satisfied. This is
taken to be

(21)

M+1

P _P;M
M

Pi

max

‘SIO‘"", i=2,3,.,N-1,(22)

where the superscript M represents variables at the Mth
iteration.

3.2. Entropy Modification at a Shock

The equations of inviscid gasdynamics admit discon-
tinuous solutions which cannot satisfy the differential equa-
tions but are valid solutions to these equations in integrai
form. Although several such discontinuous solutions can
exist, not all of them are physically acceptable. In the
present algorithm, it is straightforward to obtain different
discontinuous solutions by making different assumptions
for the entropy change of each Lagrangian cell crossing a
shock front. Physical arguments, however, require that the
correct solution is obtained when the entropy change across
the shock is evaluated by the Rankine—Hugoniot condition.

When a shock is present in the flow it is therefore
necessary to apply the Rankine—Hugoniot relation for each
Lagrangian computational cell crossing the shock in order
to modify its entropy increase. To illustrate how to do this,
we consider here only the simplest case. More complicated
situations may require more sophisticated methods to
detect the shock in order to incorporate the Rankine-
Hugoniot condition into the algorithm, according to the
characteristics of the flows considered.

Consider therefore a situation where a diaphragm
initially at the Ith cell interface separates two regions, and
the shock formed propagates towards the right-hand side
(see Fig. 1). The iteration of the system of Eqs. (21) starts by
using the initial values of entropy for all the computational
cells to obtain the updated pressure distribution, p7+!
{(i=1, 2, .., N). Rather than using the isentropic condition
{see Eq. (20)), the Rankine-Hugoniot relation is applied to
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calculate the density of all the computational cells on the
right-hand side of the diaphragm such that

DI+ (v —1)

n+1 _ f

! T+ D)+ (=Dt Py

izl (23)

where the superscript zero denotes initial values. Next the

current entropy of a computational cell on the right-hand

side of the diaphragm is modified according to

pT+1

Sf = n+1
(7Y

(24)

This new entropy is then used in the calculation for the next
time step. Note that the use of Eq. (23) does not affect the
density of cells ahead of the shock. It is also clear that it does
not require too much extra cpu time to carry out this
entropy modification since the implementation of the
Rankine-Hugoniot relation in the algorithm is non-
iterative.

3.3. The Properties of &, and &,

We now explore the properties of ¢, and ¢,, which are
analysed through the conservation equations of mass and
momentum. We first consider the mass conservation equa-
tion. For the sake of convenience, we denote the difference
of any physical quantity € (such as u or du/dt) between point
{i+ 1) and point 7 as

A§i=ff+1'§i- (25)

Based on Eqs. (8) and (9), the mass conservation equation
(1) can also be written as

M, dA
A2 dr

dp;
—=— 26
” (26)
The ith cell volume, A,, at time (¢ + A¢) can be evaluated,
using Eq. (12), as

AT = A" Ao du™+ (1 —e ) dun+ '] (27)

We can expand A7 *' and 4u” " in terms of a Taylor series
as

dA, &4,
Ar*l= A"+At«a——+2Ar —Ftour), ()
Aun ! = (4. (29)

Substitution of Eqs. (28) and (29} into Eq. (27) then leads
to

_ax) AtdAu

i+ oar)

(30)
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Note that d24,/dr* =d Au,/dt has been used in obtaining
Eq. (30). In order to analyse the effect of ¢, on the numerical
scheme, it is desirable to write d du,/dr in terms of spatial
derivatives such that

dA“f~iA%

dt T dr\ Y ax
| 0 du
T odr Ox Yox dr

Ju d /1ép
x4, (8)() A'E(\Ea); (31)

By using Eqs. {30} and (31), Eq. (26) now can be re-written

as
) (1), 2 (1) (2
p@x,— 77 5 Pax pox) Tiax) |

(32)

dpf_
dr

Next we consider the momentum conservation equation.
Equation (14) can be written in the form

Wit —ul du|” , du "+ 33)

At _EHE,-_{-( 7814)5'. ) (

where u7* ! and (du/dr)?*" can be expanded as
du, 1 d’u,
= Ai—+ -4 —ZL+ 04 34
ui + 7 T34 g -+ 0(4r%),  (34)
du|”™t  du, d%u

— =— Az— o(4r? 35
@i, T TAgE toun) (33)

Substitution of Egs. (34) and (35) into Eq. (33} results in
du; 18
du; _ ( ___P) . (1_
dt péx/);, \2
Finally by writing d°u/d* as

_la_P)

) + 0(A48%). (36)

d’u
At| —
E") ( dr*

#y_d(
drr

+1 6 ?a_u
pdxéx pox L
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FIG. 2. Four regions in the (¢,,£,) plane that characterise the
numerical performance of the algorithm. Region I: negative diffusion.
Region 11 positive diffusion, Regions 11 and TV: negative and positive
diffusion co-exist.

Eq. {(36) takes the form

du, 1dp 1 1 du dp
—_—— = - == - Ar —_————
a ( pax)f(z 8") [

186 du
Lk ¥ 2
+,D o (Syp ﬁx),:]j+ Q(A1°).

The properties of ¢, and &, can be clearly seen from
Egs. (32) and (38). Straight lines ¢, = 1 and ¢, = 3 divide the
(.. ¢,) plane into four regions as shown in Fig. 2. When
£, =&, =%, the algorithm is second-order accurate in time
and there i1s no built-in dissipation to eliminate high-
frequency disturbances {or oscillation) generated by discon-
tinvities or sharp gradients. In region 1, see Fig. 2, where
both ¢, and e, are greater than 5, there exists a negative
numerical viscosity term in both Eq. (32) and Eq. (38); this
causes numerical instability or oscillation around discon-
tinuities or strong gradients. In region 111 of Fig, 2, where ¢,
and ¢, are both smaller than £, Egs. (32) and (38) both have
truncation errors proportional to a second derivative in
space of positive coellficient, which acts as an added numert-
cal viscosity. Therefore, the scheme in this case has a built-in
mechanism to dampen the high-frequency components
generated around discontinuities or strong gradients. It
should be noted that the larger the time step 4z, or the
smaller the values of ¢, and ¢,, the stronger the damping
effect of the inherent numerical diffusion. This internal
dissipation has been a common feature shared by many
popular numerical schemes for capturing shocks, such as
Lax-Wendroff [227, Lerat and Peyret [207, and Beam and
Warming [217. It can also be shown (see Pulliam [237, for
example) that recently developed high resolution schemes
(monotone and total variation diminishing} are all
equivalent to a central differencing schetne plus some form
of implicit dissipation. In regions Il and 1V, where one of &,

(38)
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and e, is greater than { but the other is smaller than 3, the
scheme contains a negative numerical diffusion term in
Eq. (32) and a positive numerical diffusion term in Eq. (38),
or vice versa. The net overall effect, similar to either region [
or region III, depends on which mechanism is dominant. In
order to simpiify the following discussion, we constrain the
values of ¢, and ¢, to vary together and to remain in
region Il te., &, =g, <05,

34. Accuracy and Stability

The accuracy of the present algorithm is only first order
in time, although it can be made second-order accurate in
time when using &, =¢, = 3.

A strict stability analysis is very difficult because of its
non-linear nature. Following the analysis presented by
Bilbao [ 187, it can be shown that the explicit version of the
present algorithm (¢, =¢,=1) is always unstable and the
fully implicit version of the algorithm (g, =¢,=0) is
unconditionally stable. In order to perform a stable
calculation as discussed by Oran and Boris [24, Chap. 107,
we still need a Courant-like condition to be satisfied for the
flow velocities, u;,

Ail Lagrangian methods assume that the interface
position x, increases monotonically with increasing 7. The
non-physical crossing of cell interfaces is a large potential
source of instability. This can occur for large time steps
even though the fuily implicit algorithm is nominally
unconditionally stable. The condition that is necessary and
sufficient to prevent interface crossings can be written as

r+l __ yn+l__ Ln+1
A7 =x{5 = X7 >0,

(39)
where 471! is calculated from Eq. (27). Employing equa-
tion (14), 4u7** can be written as

n+l

" dit
1-— A —
,-+( g, At -

du

At = AuT 5, At 4 =

(40)

i

The last term on the right-hand side of Eq. (40) may be
approximated as

]

du
dar

" rara Y
- dr?

n+tl d
7]
md—

; dr

4 (41)

i i

By virtue of Egs. (27), (40), and (41), Eq. (39) can be
written as

A;’+Az[du;’+(l —e )4t 4 (%)

i

+(l-e)l—g,) 4 4 (%)] >0, (42)
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FIG. 3. Stability limit based on the monotonicity of interface positions
and non-negative numerical diffusion of the algorithm.

The maximum stable time step is then limited by the condi-
tion stated in Eq. (42). This equation also suggests that &,
affects the maximum stable time step to a larger extent than
g,. In fact, a good estimate of the maximuom stable time step
may be made by neglecting the last term on the right-hand
side of Eq. (42), i.c.,

I

A‘;+Az[du;’+(1*at)dm(%) ]>0, (43)
where 4{du/dr}} can be calculated from Eq. (13}. Although
Eq. (43) provides a means to control the time step in order
to prevent cell interface crossings, it is preferable to use a
fixed time step in the calculation since it can be somewhat
time consuming to estimate the maximum stable time step
using Eq. (43).

The condition imposed by Eq.(43) can also be con-
sidered as a restriction on the value of ¢, for a given time

f I

(Lj+1)

(i+1,3+1)

9] L1
X,7.0,v.Im
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step At Substitution of min[ A(dw/dr)} ], which is negative,
into Eq. (43) yields

N AT+ At Au?
A min[ A(du/dr);)

g > 1 (44)

Equation (44) gives the stability limit of £, (or ¢,} for a given
time step A¢. Bearing in mind that we have constrained our
discussion to region HI of Fig 2, the stability limit of ¢,
{or ¢,) can now be shown in Fig. 3. This figure is for a
specific set of parameters of A7=001, 4u”= -04, and
Aldu/dr); = —200.0, but the general trend will always be the
same. In this figure 47, denotes the maximum stable time
step. It is seen that the larger the time step 4¢, the narrower
the stability region for ¢, .

4. NUMERICAL ALGORITHM IN TW(D DIMENSIONS

4.1. Discretisation of the Basic Equations

The finite difference mesh used in the present study con-
sists of a network of quadrilateral cells with vertices labelled
by integer pairs (i, j), denoting column i and row j. The
assignment of variables about a typical computational cell is
shown in Fig. 4a, where pressure (p), density (p), cell
volume (A), cell mass (M), and cell entropy (S) are all
assigned to the cell centre; while coordinates (x, y), velocity
components (u, v}, and vertex mass (m, defined below) are
assigned to cell vertices.

The mass conservation equation, Eq. (1), implies that
each cell mass M, ; is constant throughout its evolution.
M, ,is the product of density and cell volume and written as

M, j=p A, {45}
The cell volume A, ; can be calculated by
A:‘.j="l“ g T Xernger Vg T Vivnjesy (46)
2[Xipn = X501 Yivry— Vi
1413+

FIG. 4. The assignment of variables about a typical computational cell.
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To calculate velocities it is necessary to integrate the
momentum equations (2) and (3), Figure 4b shows a typical
compuiational volume ABCD for momentum integration,
where 4, 8, C, and D are mid-points, for the vertex (4, j). In
the present algorithm the mass of vertex (i, j), m, ;, is taken
to be the average among the masses of its four neighbouring
cells and therefore is also a constant given by

m=i(Mo o MM M) (47)

Integration of Eqgs. (2) and (3) over the volume enclosed by
the dashed lines for the vertex mass m; ; shown in Fig. 4b

yields
duij Fo;
dt mi.j’ (4 )
dv, , F,.,
oL )

where F, and F, are components of pressure force acting on
the vertex mass m, , in the x and y directions, respectively.
F, and F, are calculated from

\:z} ZEPLJ(y[+lJ y|‘,j+l)+pi4l.j(.y:'.j+lhyi-—l.j)

P lYin V) P o — Vi 3
(50)

. ‘
Fyi,j": 3[pi,j(xj‘j+ldxi+l,j]+pi—l.j(xr‘ﬁl.jixi,ji-l)

+ P l.jr-l(xn‘,j—lnxi)],j)+ p!‘.jfl(xi-#l,j_'xi,j- AR
(51}

The isentropic condition, Eq, (4), means that the entropy of
each computational cell remains constant throughout its
evolution,

Py P

M Pi.)‘)y'

(52)

The evolution equations of cell vertices, Eqs. (6) and (7),
are discretised to

xXirt=uxy + Aile u exyuittl,

nJ

{33)
(34)

w4+ (1=

)bn+l
[ .

}”?;‘1 =yl Hdatle ]+ (1—
The quantity ¢, is the explicitness parameter for vertex
iocations which has properties similar to those discussed in
one dimension.
The semi-discretised momentum equations (48) and (49)
are further discretised to

 F it (1=2) L)
= a e T ZE T sy
iJ
e F"i’ 4 (1 - Fn1+l
VIF = 07+ At 2 (m WBG s

iJ
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where ¢, is the explicitness parameter for vertex velocities.
Although it is possible to assign different valuestoe, and e,
we constrain the values of ¢, and ¢, to be equal and in the
region 111, see Fig. 2, as we have done in one dimension.

In one dimension, vertex coordinates do not appear
explicitly in the momentum equation, see Eq. (14). For two-
dimensional flows, however, the problem is complicated by
the explicit dependence of vertex velocities on their coor-
dinates through F_ and F,. Even so, the underlying idea of
constructing the one-dimensional implicit Lagrangian aigo-
rithm presented in the last section is still applicable in two
dimensions. The algorithm is again based on the fact that
the density of cell {i, ) at time ¢+ A¢, computed from the
mass conservation equation, Eq. (45}, must be equal to that
calculated from the isentropic condition, Eq. (52), so that

M, a1y 1y
T _=(—f) . (57)
¥ Ai,;—l Si‘j
From Eq. (57) we can write
B ] M 4
i =52 (58

Equation {58) is used to obtain the pressure ficlds at time
1+ A4r

4.2, Solution Procedure

n+1 n+1

Since both pressures p}; and coordinates {x77", ¥
are unknown a priori and they are strongly coupled through
the momentum equations, they have to be calculated by
iteration. The solution procedure employed in the present
work can be summarised as:

r:+1)

1. Assign updated coordinates of vertex (i, j) to
(F274L 7).

2. Assign updated pressure of cell (i, j)to p} Tt

3. Calculate velocity components u:{}‘ and v} ;" from
Egs. (55) and (56).

4. Calculate coordinates of vertex (i, j), (x7 7%, y7
from Egs. (53) and (54) using updated velocity components,

5. Calculate cell volumes A;}' from Eq. (46) using
updated vertex coordinates.

+$)

6. Update pressures p 1! using Eq. (58).
7. Check the convergence of pressures. If inequality

a4l

p!_j’

n+l

P.lf

—n+1

plj

swls

(59)

is satisfied, go to step 8. Otherwise, go to step 2.
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8. Check the convergence of coordinates. If inequalities

X =xgy!
2w, (60)
X,-j

= 1 r+1

viT p

K iy,
S < s, (61)

i

are satisfied, go to step 9. Otherwise, go to step 1.
9. Advance the solution in time.

Here w, and @, are two prescribed small quantities,
assumed to be {0~ and 107¢, respectively, in this study.

5. NUMERICAL EXPERIMENTS FOR
ONE-DIMENSIONAL FLOWS

In this section we apply the Lagrangian algorithm of one
dimension described in Section 3 to four gasdynamic flows
of air (y = 1.4). The first two are typical Riemann problems,
namely the shock tube problems of Sod [4] and Lax [7].
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The third one simulated the response of a planar premixed
flame front, treated as a contact discontinuity on an
acoustic time scale, to a sinusoidal pressure input; we con-
sider a situation where the initial pressure and velocity are
continuous but the density is not. In the last one we consider
an initial pressure disturbance breaking into two travelling
pressure waves; all the physical quantities are continuous in
this example.

In Sod’s shock tube problem, the initial discontinuity
breaks into a weak shock wave followed by a contact dis-
continuity and a rarefaction wave; whilst in Lax’s problem,
the initial discontinuity breaks into a moderately strong
shock followed by a density level far higher than its initial
value. The contact discontinuity lowers the density, which is
then rebuilt slowly by the rarefaction wave. Numerical
results for the two shock tube problems of Sod and Lax are
compared with exact solutions which are available, for
example, from [25].

Since it can be rather time consuming to estimate the
maximum stable time step from the Courant-type condition
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FIG. 5. Sod’s problem with entropy modification. ¢, = ¢, =0.5, 4¢=2.0x 1073
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of Eq. {43), we have used constant time steps to compute the
evolution of physical variables as presented below. In all the
four examples considered in this section, uniform initial cell
sizes of 0.01 are used in the calculations. All the calculations
were performed on a SUN SPARC workstation, In the first
two problems, the exact selution is plotted as a solid line
and the computed resuits are denoted by . The CFL condi-
tion numbers mentioned below, for Sod’s and Lax’s shock
tube problems, are calculated using the initial cell size and
the exact solutions, ie.,

A1 X (@ + V)pax

CFL = Ve

1

where « is the local sound speed.

3.1. Sod’s Shock Tube Problem

in Sod’s problem, the initial condition (at #=0.0) is
defined by

L=

2

ch
|

ol
B J
g o5
e} : TS OEE

.25

ea T ] ] T T 1 T 1 T T T TT ) T T 1 T 1
0.0 0.25 05 05 10
X

(PR T Ey e T
0.0 0.25 0.5

X

1 T T 7 T T T 1T 1 L

0.75 1.0

0€xgd j<xgl
p 1.0 0.125
H 0.0 0.0
p 1.0 al

The numerical resuits are shown at 7=0.2, Numerical
experiments show that for Sod’s problem the maximum
time step At,,, (see Fig. 3) is 24x1077 ie, the CFL
condition number is 0.52.

Figure 5 shows the results calculated by using 4d7=
2x1073 g, =¢,=0.5. The corresponding CFL condition
number is 0.44. It is seen that enormous numerical oscilla-
tions occur between the shock front and the right endpoint
of the rarefaction, especially behind the shock. The constant
states between the right endpoint of the rarefaction and the
shock can be only partially realised for pressure and density
and cannot be realised at all for velocity and entropy.
However, the rarefaction wave is calculated accurately, The
reason for these numerical results is that when ¢, =¢, = 0.5
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FIG. 6. Sod's problem with entropy modification. &, =g,= — 12, 41=1.0x 10—,
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is used there is no internal dissipation to dampen the
high-frequency components generated at the shock and to
round the endpoints of the rarefaction. This oscillatory
behaviour behind the shock is very similar to the two-step
Lax—Wendroff method with an added artificial viscosity as
shown by Sod [4]. Note that the Lagrangian algorithm still
gives infinite resolution of the contact discontinuity.

It is clear that numerical dissipation is required in order
to dampen these oscillations. There are several ways to
achicve this, as can be seen from Eqgs. (32) or (38). Ideally
we would wish to proceed either by increasing the time step
Ar with fixed ¢, and ¢, or by lowering ¢, and ¢, but keeping
the time step 4! fixed. Unfortunately, these two ways are not
feasible when the time step At is close to At,,,, since there
is only a very narrow region in which these parameters may
vary within the required stability criterion (see Fig. 3). A
careful analysis of Fig. 3 suggests that the decrease of time
step Ar gives rise to a rapid increase in the stability region
that g, and ¢, can vary within. Therefore, the effective way
to gain more numerical dissipation is to lower the time step
4r and consequently use very small {even negative)} ¢,
and ¢,. The penalty paid by obtaining sufficient numerical
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dissipation to dampen high-frequency oscillations, however,
is the cost of more computing time.

Results calculated by using Ar=1x10"7 and ¢, =
g,= —1.2 are shown in Fig. 6. The corresponding CFL
condition number is 0.22. These results clearly demonstrate
the improvement in accuracy at the discontinuities. Only
very slight numerical oscillations can be observed in the
velocity profile. However, as a consequence of achieving
sufficient numerical dissipation for the discontinuities, the
shock is spread over four to five cells instead of one to two
cells {see Fig. 5) and the endpoints of the rarefaction are
noticeably rounded. Note that the algorithm gives the
correct entropy increase across the shock and the correct
values of physical variables at constant states. We also
observe that the numerical dissipation does not alter the
posttions of the shock and the contact discontinuity. We
stress that Eulerian calculations, including the high resolu-
tion schemes, cannot achieve this infinite resolution at the
contact discontinuity.

Figure 7 shows results calculated by using the same
parameters as Fig. 6 but without taking into account the
entropy change across the shock. These results are very
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TABLE]
Comparison of CPU Time

Fig. 6 Fig. 7
(with entropy modification) (without entropy modification)

Cpu time 36s 3ts

similar in general to those presented in Fig. 6. However, a
close look at the results in Fig. 7 reveals that the values of
physical variables at constant states are slightly inaccurate.
Density and velocity are overpredicted and the pressure is
underpredicted. A calculation based on the predicted values
of physical variables at constant states indicates that the
velocity of the contact discontinuity is slightly higher than
the exact solution, whilst the velocity of the shock front is
slightly lower than the exact value. A practical conclusion
drawn from these results is that the isentropic assumption is
reasonably good for weak shocks.

To demonstrate the effect of entropy modification on the
computing time, the cpu times for obtaining numerical
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results shown in Figs. 6 and 7 are compared in Table I. It is
seen that there is about 16% increase in cpu time when the
entropy modification is carried out,

5.2. Lax’s Shock Tube Problem

The initial condition (at 1 = 0.0) for Lax’s problem is
defined as

0<x<y f<xxl
0.445 0.5
u 0.698 0.0
j2 3.528 0.571.

The numerical results are shown at t=40.1. For this
problem, our numerical experiments show that the maxi-
mum time step A7,,,, 1s 1.45 x 102, which corresponds to a
CFL condition number of 0.45.

Numerical results shown in Fig. 8 are obtained using
At=10x10"? (CFL number is 0.32), ¢,=¢,=0.0, and
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without entropy modification. Because of the presence of
the inherent numerical dissipation, there are only slight
overshoots just behind the shocks and the endpoints of the
rarefaction arc noticeably rounded. The shock transition,
however, occupies only one to two cells and this is believed
to be caused by the stronger natural compression
mechanism of the shock than that in Sod’s problem (see
Fig. 7). The constant states can be clearly realised; however,
the values of physical variables at constant states differ from
the exact values, especially for density, when using the isen-
tropic approximation. Based on mass conservation across
these discontinuities and the computed values of density
and velocity, it can be shown that the velocity of the contact
discontinuity is slightly overpredicted and the velocity of the
shock front is slightly underpredicted, as in Sod’s problem.

The numerical results computed using A7=2.0x10"*
and ¢, =¢,=00 and without entropy modification show
that violent numerical oscillations occur behind the shock
(they are not depicted here). These results are expected since
the use of a much smaller time step with a fixed &, (or £,),
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compared with Fig. 8, reduces the magnitude of the built-in
numerical dissipation and leaves the numerical oscillations
generated by the shock insufficiently damped.

Results shown in Fig. 9 are calculated by using the same
time step and explicitness parameters as those used in Fig. 8,
but with the entropy of the shocked flow modified using the
Rankine-Hugoniot condition. These results are very similar
to those presented in Fig. §; the shock is spread over one to
two cells, the rarefaction is rounded to the same extent, the
constant states are clearly realised, and there are slight
overshoots/undershoots behind the shock. Unlike the
results of Fig. 8, however, the values of physical variables at
constant states are now in excellent agreement with the
exact solutions and the correct entropy change of the
shocked flow is predicted. We observe that the magnitude of
the overshoots/undershoots is slightly greater than that
found in Fig. 8.

We have shown in the calculation of Sod’s problem that
it is feasible to achieve sufficient numerical dissipation in
order to eliminate numerical oscillations behind the shock
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FIG. 9. Lax’s problem with entropy modification. £, =&, =00, 4r=1.0x10"3.
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by using a smaller time step and smaller (even negative)
explicitness parameters. For Lax’s problem, we have also
performed a calculation using smatler 4r and ¢, and ¢,
aiming to eliminate the numerical oscillations observed in
Fig. 9. The results of this calculation are shown in Fig. 10,
where the parameters used are Ar=50x10"* and
£, =¢,= — 1.0; the corresponding CFL number is 0.16. It is
seen that the numerical oscillations are further damped and
can hardly be observed. The endpoints of the rarefaction
and the shock front are also slightly further smoothed out,
compared 1o Fig. 9.

5.3. Response of a Planar Flame to a Harmonic Pressure
Wave

In this example we consider the response of a density
interface to an initially sinusoidal pressure disturbance. The
problem arises from the study of the interaction at the very
carly stage between a planar premixed flame and a long
length-scale pressure wave.

On an acoustic time scale, the planar flame front can be
essentially treated as a density discontinuity and is con-

vecied with the gas flow driven by a pressure disturbance
[26]. Under these circumstances the governing equations
reduce to the equations of gasdynamics.

The initial conditions (at ¢=0.0) are shown in Fig. 11.
The pressure of the burned gas side (low density) is

] pressure
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FIG. 11. [Inital conditions for studying the response of a density dis-

continuity to 2 harmonic pressure wave.
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disturbed by a long length-scale sinusoidai distribution
of one cycle. The time step At used in the calculations is
1.5x10°.

We have used three different values of explicitness
parameters ¢, (or ¢,} in the calculation of this example to
investigate its effect on the numerical results. Numerical
results are shown in Fig. 12, where the physical variables,
i.e., density, velocity, and pressure, are shown at t =0.3. The
oscillatory behaviour of the algorithm when e, =¢,=0.751s
used can be clearly seen at strong gradients. In the first two
examples, which contain a shock in the flow, the use of
explicitness parameters greater than 0.5 leads to numerical
instabilities very rapidly. In this example, however, the
numerical instability caused by the negative numerical
dissipation grows gradually with time since there is no
non-linear discontinuity {shock) present in the flow. The
figure also clearly shows the smoothing out of strong
gradients caused by the built-in numerical dissipation when
g,=¢,=025 is used. The value of the explicitness

parameters, however, has a negligible effect on the variation
of the interface position with time for the values used here.
The results of this example suggest that the use of
e, =&, =0.5 yields the most accurate solutions and should
be used for problems which do not contain non-linear
discontinuities {i.e., shocks).

5.4. Propagation of a Planar Pressure Pulse

In this test problem the initial pressure disturbance will
break into two propagating waves in the positive and
negative directions, respectively. The initial conditions are
defined by p=1.0, =00, p=1.0+05 xsech{z), where
z=350x(x—0.5) and 0 < x < 1.0. Based on the conclusion
of the last example, it is preferable to use ¢, =¢,=0.5 to
perform the calculation of the Lagrangian algorithm.

The results of the Lagrangian calculation at t=02 are
compared with those calculated by the first-order upwind
scheme of Steger and Warming [ 1] in Fig. 13. The time step
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FIG. 13. Profiles of density, velocity, and pressure at =02,

used in these calculations is 41=2.0x10""> As can be
expecied, the first-order upwind scheme greatly smooths
out the strong gradients, while the Lagrangian aigorithm
can maintain these strong gradients.

6. APPLICATIONS OF THE TWO-DIMENSIONAL
LAGRANGIAN ALGORITHM

In this section we first apply the two-dimensional
Lagrangian algorithm described in Section 4 to two gas-
dynamic problems in order to evaluate the capability and
accuracy of the method. The first test is the propagation of
a circular pressure pulse. The second is the shock problem
of Sod with a circular setup of initial conditions. Lastly, at
the end of this section, we use the method to study the early
stage interaction between a pressure wave and a curved
flame. The expected Rayleigh-Taylor instability is clearly
demonstrated by our Lagrangian method.

The specific heat ratio v is assumed to be 1.4. Unless
otherwise stated, the solution domains are divided into a
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FIG. 14. Evolution of pressure at the pulse centre with time.
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number of uniform squares with Ax = Ay =00l and the
time increment A7 =2x 107>,

6.1. Propagation of a Circular Pressure Pulse

The solution domain [0,11x[0,1] is divided into
100 x 100 uniform squares. A circuiar pressure pulse is set
up around point (0.5, 0.5) in terms of p =1+ 0.5 x sech(z),

where z = 50 x \/(x,-d,- — xsgyso)z + (};;"j — Vso, 50)2. Initial

v

3
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conditions for density and velocities are such that p=1,
u=1v="0 everywhere. Explicitness parameters of ¢, =¢,=
0.5 are used in the calculation to make the algorithm
non-diffusive and te achieve higher accuracy.

The evolution of the pressure at the centre, point
(0.5, 0.5), with time is shown in Fig, 14. It is interesting that
the pressure at the pulse centre drops rapidly below unity
and then recovers gradually. Again the result of the first-
order upwind scheme of Steger and Warming is diffusive
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FIG. 15. Comparison of density profiles at f=0.2: (a) Lagrangian; (b) upwind.
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near the minimum of the centre pressure, ie., r=0.05;
clsewhere the results of the two methods are in very good
agreement. '

The results of density, u-velocity, and pressure at 7 =0.2
are compared with those of the upwind scheme in Figs, 15,
16, and 17, respectively. In general, the profiles of these
physical quantities calculated by the Lagrangian method
follow very closely the results of the upwind scheme. There
are, however, still some noticeable differences between the
results of the two methods. In Fig, 15, the Lagrangian algo-
rithm predicts a rather strong density gradient at the wave
front; however, the upwind scheme predicts a very weak
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density gradient at the wave front as the consequence of
numerical diffusion. The smearing of the wvelocity and
pressure gradients at the wave front in the results of the first-
order upwind scheme can also be clearly observed in
Figs. 16 and 17.

6.2. Circular Version of Sod’s Problem

For this test problem the solution domain [0, 1] x [0, 1]
is uniformly divided into 100 x 100 squares. The initial con-
ditions are those of the planar version given in Section 5.1
with v =0 everywhere; the region of high pressure and high
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F1G. 16. Comparison of u-velocity profiles at 7 =0.2: (a) Lagrangian; (b) upwind.
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density in this case is a circle of radius 0.15 centred at
(0.5, 0.5). This problem consists of three waves, an outward
travelling shock followed by a contact discontinuity and a
rarefaction travelling toward the centre. The following
parameters are used in the calculation of this problem: 41 =
2% 1073 ¢, =¢, = 0.0. Figure 18a shows the density profile
in a quarter of the domain at t =0.1 and Fig. 18b shows the
pressure profile at the same time. Note that the slight asym-
metry of the circular waves is not unexpected because the
initial circular boundary of the high pressure region is
approximated by cartesian step gridlines. Both the shock
and the contact discontinuity are sharply resolved. These
results are comparable with those presented by Toro [9]
using the weighted average flux (WAF) method. Note that
the isentropic condition is used in obtaining the results of

Fig. 18. The values of variables behind the shock are
expected to be slightly inaccurate.

6.3. Rayleigh—Taylor Instability in Flame Propagation

On an acoustic time scale, the equations governing the
interaction between a pressure wave and a premixed flame
reduce to the equations of gasdynamics except that the
momentum equations are maodified to

du I ap

_-? 2
dt pyox (62)
b__ 1o )

di— " pyay
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FIG. 18. Density {(a) and pressure (b) contouss of circular version of Sod’s problem at 7 =0.1.

In these equations, # and v are non-dimensionalised by the
sound speed of cold gas a, coordinates x and y by a typical
acoustic length scale L, time ¢ by the corresponding time
scale L/a, and pressure p and density p by the values for cold
gas, tespectively.

The solution domain [0.0, 2.5] x [0.0, 0.85] is uniformly
divided into 250x 85 squares. The region [0.0, 2.0] x
[0.0,0.85] is filled with hot gas with density p = 0.2 while
the region [2.01,2.5] % [0.0,0.85] is filled with cold gas
with density p = 1.0. A planar linear pressure disturbance is
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sef up in the hot gassideinterms of p=1 + Vp x (x — 2.0),
where Vp= —-0.25 and 0 < x<2.0. The initial pressure of
cold gas is unity everywhere. Both hot and cold gases are
stationary at time ¢=0. This assumption reflects the fact
that the burning velocity of a laminar flame is much slower
than the sound speed [26]. In order to investigate the
growth of a flame front disturbance under the action of this
pressure wave, the density interface at x = 2.01 is disturbed
to a sinusoidal distribution with wavelength A=0.12 and
amplitude a,=0.005. The time increment and explicitness
parameters used in this calculation are such that 41=
2x1073and ¢, =¢,=0.5.

Figure 19 shows a portion of the density interface (flame
front) at time r =0, 0.16, 0.32, 0.48, and 0.64. The accelera-
tion and deformation of the flame front under the action of
the pressure disturbance are clearly represented by the
numerical results. The computation cannot go further
because of the large fluid distortions at the flame front. On
the other hand, at a longer time the numerical results do
not have any physical significance since this simplified
gasdynamic model no longer holds true. This work is
developed in references [11] and [27].

7. CONCLUDING REMARKS

A simple and flexible implicit Lagrangian algorithm
that can predict one- and two-dimensional gasdynamic
problems involving shocks and contact discontinuities has
been presented. Because of the way that the present method
is constructed, it is capable of strictly conserving the mass
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and entropy of each Lagrangian computational cell
throughout its evolution.

When the flow of interest contains a shock, it is necessary
to make the algorithm dissipative in order to dampen the
high-frequency components of osciliations generated by the
shock. The magnitude of the buiit-in numerical dissipation
can be controlled easily by varying the values of the time
step and explicitness parameters, within the stability limit.
The use of smaller (or even negative) explicitness parameters
leads to more numerical dissipation but also reduces the
time step allowed by the stability criterion. The maximum
stable time step clearly depends on the shock strength, due
to shock compression; the stronger the shock, the smaller
the maximum stable time step.

Numerical experiments for Sod's and Lax’s problems
show that sufficient numerical dissipation can be achieved
to eliminate numerical oscillations behind the shocks when
the time step used corresponds to a CFL condition number
of one-third to one-fourth, and some negative value
for &, and &, is used. Under these circumstances, the
numerical dissipation is excessive for the rarefaction since
their endpoints are considerably rounded. The present
Lagrangian method does not give particularly good results
for the Riemann problems considered here when compared
to high resolution schemes {such as TVD schemes).
However, it is the suitable method to study problems where
contact discontinuitics are of prime interest such as
examples 5.3 and 6.3 with which we are concerned in this
study.

For problems which do not involve non-linear discon-
tinuities (shocks), it is preferable to use ¢, =¢,=0.5 in the
present algorithm. The method has been successfully
applied to predict the response of a planar and a curved
density discontinuity, which simulates & premixed flame
front on an acoustic time scale, to a pressure disturbance.

Although in this work we have used a constant explicit-
ness parameter ¢, (or ¢,} throughout a computation, it is
possible to vary ¢, and ¢, from cell to cell or from time step
to time step. The algorithm can also be extended to one-
dimensional cylindrical and spherical coordinates with ease.

The method in two-dimensions, like any other
Lagrangian methods, suffers from the severe problem of
grid distortions. But the method can still find its application
in problems where a contact discontinuity and short time
effects are of particular interest, which is the physical situa-
tion we are concerned with here. An Eulerian caiculation is
certainly preferable if one is interested in long time effects.

Finally we point out that it is possible to overcome the
two main shortcomings of Lagrangian methods, namely
the necessity (o run at a relatively small CFL number, and
the numerical instability caused by interface crossings
in one dimension and grid distortions in two and three
dimensions. This can be done by employing a Lagrangian
calculation locally around a contact discontinuity, since it
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can predict excelient resolution nearby; regions away from
the contact discontinuity can then be solved by an Eulerian
method [17, 287.
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